Vysoké učení technické v Brně Fakulta strojního inženýrství

Energetický ústav Odbor termomechaniky a techniky prostředí

TRNSYS Type253

TRNSYS module for 1D PCM layer heat transfer modelling

Apollo ID:	26344
Datum:	17. prosince 2012
Typ projektu:	R - software
Autor:	Ing. Lubomír Klimeš

Popis a využití software TRNSYS Type253

TRNSYS (**TRaN**sient **SY**stem **S**imulation) je v technické praxi široce využívaný simulační nástroj pro analýzu dynamických systémů. TRNSYS je nejčastěji využíván pro návrh a simulování provozů budov, které obsahují aktivní a pasivní solární prvky. Další oblastí, ve které je TRNSYS s výhodou používán, jsou úlohy spjaté s obnovitelnými energiemi.

TRNSYS je modulární systém, tj. uživatel sestavuje simulaci daného problému pomocí tzv. základních modulů, přičemž každý z nich má svoji specifickou funkci, kterou lze při simulaci využít. TRNSYS je v základní instalaci vybaven velkým počtem různorodých modulů, které lze použít pro řešení nejrůznějších inženýrských problémů. Avšak v posledních letech se v oblasti vývoje materiálů začínají objevovat tzv. materiály se změnou fáze PCM (Phase Change Materials), které mají široké uplatnění od problematiky stavebních konstrukcí¹ přes využití v solárních systémech až po uchovávání tepla², tzv. heat storage.

V současné době TRNSYS ve verzi 17 neobsahuje modul, který by umožňoval simulovat soustavy obsahující materiály s fázovou přeměnou PCM. Software **TRNSYS Type253** tento nedostatek odstraňuje a umožňuje řešit 1D nestacionární přenos tepla vrstvou předepsané tloušťky tvořené materiálem s fázovou přeměnou PCM o daných parametrech. Modul **TRN-SYS Type253** řeší přenos tepla v PCM vrstvě kondukcí využitím metody kontrolních objemů. Na obou površích vrstvy je možné určit přenos tepla konvekcí (součinitelem přestupu tepla ha okolní teplotou T_{∞}) a/nebo měrným tepelným tokem \dot{q} . Řešením výpočtu modulem **TRNSYS Type253** jsou povrchové teploty v čase na obou površích PCM vrstvy. Pro modelování fázové přeměny je použita metoda efektivní tepelné kapacity³.

Modul **TRNSYS Type253** tedy umožňuje řešit 1D nestacionární přenos tepla v PCM vrstvě, pomocí kterého je možné provádět simulace např. složené stěny, solárních kolektorů nebo tepelného výměníku s využítím materiálů s fázovou přeměnou PCM. Ukázka výsledku simulace pro tepelný výměník tvořený CSM panely s PCM je na Obrázku 5 na straně 6.

Software **TRNSYS Type253** je tvořen tzv. *proformou* (Type253.tmf, Type253.bmp) definující modul pro použití v TRNSYSu a jeho propojení s ostatními komponentami simulace a vlastním *výpočetním jádrem* modulu implementovaném v C++ a zkompilovaném do dynamické knihovny (Type253.dll).

Instalace software TRNSYS Type253

Ukončete TRNSYS, pokud je spuštěn. Pro instalaci a správnou funkčnost modulu **TRNSYS Type253** je provést následující dva kroky instalace:

- 1. Do adresáře .\Studio\Proformas\My components v adresáři s instalací TRNSYSu nakopírovat soubory Type253.tmf a Type253.bmp.
- 2. Do adresáře .\UserLib\ReleaseDLLs v adresáři s instalací TRNSYSu nakopírovat soubor Type253.dll.

Po spuštění TRNSYSu se v paletě dostupných modulů (tzv. component listu) v nabídce My components zobrazí modul Type253, který lze nyní používat stejným způsobem jako ostatní moduly TRNSYSu.

¹Kuznik et al., Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation, Energy and Buildings, 40 (2008), pp. 148–156.

²Tyagi et al., *Review on solar air heating system with and without thermal energy storage system*, Renewable and Sustainable Energy Reviews, 16 (2012), pp. 2289-2303.

³Stefanescu D. M., Science and Engineering of Solidification, 2nd Ed., Springer, 2009.

Použití a nastavení software TRNSYS Type253

Instalací modulu Type253 podle výše uvedeného odstavce je modul Type253 zpřístupněn uživateli v paletě modulů. Po instalaci může uživatel využívat Type253 v libovolné simulaci stejným způsobem jako jakýkoliv jiný modul TRNSYSu.

Modul **TRNSYS Type253** vyžaduje ke své činnosti 8 parametrů (jsou konstantní po celé trvání simulace), viz Obrázek 1 na straně 5 a 7 vstupů (mohou se měnit v čase simulace), viz Obrázek 2 na straně 5. Výstupem modulu Type253 jsou pak dvě teploty na obou površích PCM vrstvy, viz Obrázek 3 na straně 5. Efektivní tepelnou kapacitu materiálu s fázovou přeměnou PCM je možné zadávát ve tvaru

$$c_{\text{eff}}(T, T_{\text{pch}}, c_0, c_1, \sigma) = c_0 + c_1 \exp\left\{-\frac{(T - T_{\text{pch}})^2}{\sigma}\right\},$$

kde T_{pch} , c_0 , c_1 a σ jsou parametry volené uživatelem, pomocí kterých je definováno např. latentní teplo fázové přeměny a teplotní interval fázové přeměny.

Parametry

lambda součinitel tepelné vodivosti PCM [W/mK]

rho hustota PCM $[kg/m^3]$

c0 měrná tepelná kapacita PCM vně interval fázové přeměny [J/kgK]

c
1 nárust měrné tepelné kapacity [J/kgK] vzhledem k c
0 při teplotě $T_{\rm pch}$ v oblasti fázové přeměny; maximální hodnota měrné tepelné kapacity při teplotě
 $T_{\rm pch}$ je tedy $c_0 + c_1$

sigma parametr řídící šířku teplotního intervalu fázové přeměny [K²]

 \mathbbm{N} počet uzlů pro numerický výpočet a tloušťku PCM vrstvy L

L tloušťka PCM vrstvy [m]

Tinit počáteční teplota [°C] PCM vrstvy v čase t = 0

Vstupy

Tpch střední teplota fázové přeměny T_{pch} [°C] (teplota, při které nabývá funkce efektivní tepelné kapacity své maximální hodnoty)

TinfL teplota okolí $T_{\infty,L}$ (okolní tekutiny) na levé straně PCM vrstvy [°C]

hL součinitel přestupu tepla konvekcí $h_{\rm L}$ na levé straně PCM vrstvy [W/m² K]

qL měrný tepelný tok $\dot{q}_{\rm L}$ [W/m²] na levém povrchu PCM vrstvy

TinfR teplota okolí $T_{\infty,R}$ (okolní tekutiny) na pravé straně PCM vrstvy [°C]

 ${\tt hR}$ součinitel přestupu tepla konvekcí $h_{\rm R}$ na pravé straně PCM vrstvy $[{\rm W/m^2\,K}]$

qR měrný tepelný tok $\dot{q}_{\rm L}$ [W/m²] na pravém povrchu PCM vrstvy

Výstupy

```
TsurfL teplota T_{\text{PCM,L}} [°C] na levém povrchu PCM vrstvy
```

TsurfR teplota $T_{\text{PCM,R}}$ [°C] na pravém povrchu PCM vrstvy

Technické a programové požadavky

Operační systém Windows s nainstalovaným TRNSYSem.

Vazba na projekty

- 1. FSI-J-12-22 Aplikace metod numerického modelování a optimalizace v inženýrských úlohách se změnou skupenství a struktury
- 2. OC10051 Využití materiálů se změnou skupenství pro vyšší efektivnost solárních vzduchových systémů
- 3. ED0002/01/01 NETME Centre Nové technologie pro strojírenství

Licenční podmínky

K využití software jiným subjektem není nutné nabytí licence. Poskytovatel licence na software nepožaduje licenční poplatek.

Kontaktní osoba

Ing. Lubomír Klimeš, klimes@fme.vutbr.cz

Dokumentace grafického uživatelského prostředí

Dialogová okna pro nastavení parametrů, vstupů a výstupů jsou na Obrázcích 1, 2 a 3 na straně 5. Ukázka použití modulu Type253 v programovém prostředí TRNSYS je na Obrázku 4 na straně 6 a ukázka využití modulu Type253 v simulaci tepelného výměníku je na Obrázku 5.

Stažení software

Software je možné stáhnout na

http://www.energetickeforum.cz/fsi-vut-v-brne/vysledky-vyzkumu.

Prohlašuji, že popsaný výsledek naplňuje definici uvedenou v Příloze č. 1 Metodiky hodnocení výsledků výzkumu a vývoje v roce 2012 a že jsem si vědom důsledků plynoucích z porušení § 14 zákona č. 130/2002 Sb. (ve znění platném od 1. července 2009). Prohlašuji rovněž, že na požádání předložím technickou dokumentaci výsledku.

V Brně dne 17. prosince 2012.

Ing. Lubomír Klimeš

Project7) Type253								
Parameter Input Output Derivative Special Cards External Files Comment								
đ			Name	Value	Unit	More	Macro	
•	1	9	lambda	1	-	More	V	
1	2	9	rho	800	-	More	v	
26	3	đ	c0	2200	-	More		
	4	đ	c1	40000	-	More	v	
	5	đ	sigma	5	-	More	▼	
	6	đ	N	15	-	More	V	
	7	đ	L	0.03	-	More	▼	
	8	đ	Tinit	30	-	More	v	
			-	,				

1	6	Tpch	0 Value	- Unit	More	Macro
2	ð	TinfL	0	·	More	N
3	ď	hL	0	-	More	
4	đ	qL	0	-	More	N
5	đ	TinfR	0	-	More	₹
6	đ	hR	0	-	More	
7	đ	qR	0	-	More	
7	đ	qR	0	[- 	More	Y

Obrázek 2: Vstupy modulu Type253

(Project7) T	ype253									
Parameter Input Dutput Derivative Special Cards External Files Comment										
6	Name	Value	Unit	More	Масго	Print	-			
1	S TsurfL	0	-	More	N					
<u> </u>	a TsurfR	0	-	More	N					
23										
							-			

Obrázek 3: Výstupy modulu Type253

Obrázek 4: Použití modulu Type253 v simulaci TRNSYS

Obrázek 5: Ukázka využití modulu Type
253 v simulaci tepelného výměníku