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ABSTRACT

The multivariate split normal distribution extends the usual multivariate normal distri-

bution by a set of parameters which allows for skewness in the form of contraction/dilation

along a subset of the principal axes. This paper derives some properties for this distribution,

including its moment generating function, multivariate skewness and kurtosis, and discusses

its role as a population model for asymmetric principal components analysis. Maximum

likelihood estimators and a complete Bayesian analysis, including inference on the number

of skewed dimensions and their directions, are presented.

1. INTRODUCTION

A natural direction for extending the normal distribution is the introduction of some

sort of skewness, and several proposals have indeed emerged, see e.g. Azzalini (1985) for an

early contribution and Fernandez and Steel (1998) for a �exible family of skew distributions.

Perhaps the most important member of the Fernandez-Steel family is the split normal distri-

bution, or the two-piece normal, originally introduced by Gibbons and Mylroie (1973), with

most of its known properties derived by John (1982); see also Kimber (1985) and Mudhokar

and Hudson (2000). Johnson, Kotz and Balakrishnan (1994) contains references to papers
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where the split normal distribution is used as a statistical model. The easily interpreted form

of the split normal distribution has merited its use as a convenient vehicle for elicitation of

subjective beliefs, see e.g. Blix and Sellin (1998) and Kadane, Chan and Wolfson (1996).

Several of the univariate skewed distributions have subsequently been generalized to the

multivariate setting, or are used as the core component in such a multi-dimensional extension.

In particular, the distribution in Azzalini and Dalla Valle (1996) generalizes Azzalini�s (1985)

distribution to the multivariate setting, and Ferreira and Steel (2004) have recently proposed

a general method of transforming a set of univariate distributions to a multivariate family,

with special emphasis on the class of skewed distributions in Fernandez and Steel (1998).

Bauwens and Laurent (2002) propose a fat tailed skewed multivariate distribution in the

analysis of �nancial data.

In an in�uential paper on Monte Carlo integration, Geweke (1989) suggested a multi-

variate generalization of the split normal distribution to be used in the construction of an

importance function. The density was only given up to a constant and no distributional prop-

erties were presented. This paper derives some properties of this distribution and develops

a complete Bayesian inference procedure for this model.1

The paper is outlined as follows. The next section gives a short review of the univari-

ate split normal distribution, de�nes the multivariate split normal distribution and derives

some of its properties. Statistical inference for the multivariate split normal distribution is

discussed in Section 3, where both maximum likelihood estimation and a Bayesian analysis

of the multivariate split normal model are presented. The proofs have been collected in an

appendix.

2. THE MULTIVARIATE SPLIT NORMAL DISTRIBUTION

In order to describe the multivariate split normal distribution we start out with its uni-

variate special case introduced in John (1982), who derived many of its properties, and

further studied in Mudhokar and Hutson (2000). Moreover, with � = 0 and some reparame-

trization, it is a special case of the distribution studied in Fernandez and Steel (1998). We

use a slightly di¤erent parametrization which is more easily generalized to the multivariate

1The multivariate split normal distribution is a member of the Ferreira-Steel family. Ferreira and Steel

(2004) have independently derived some of the results presented here. Ferreira and Steel (2004) also treat

multivariate regression analysis with skewed error terms.
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case.

De�nition 1 x 2 R follows the univariate split normal distribution, x � SN(�; �2; � 2), if

it has density

f(x) =

8<: c � exp
�
� 1
2�2
(x� �)2

�
if x � �

c � exp
�
� 1
2�2�2

(x� �)2
�

if x > �;

where c =
p
2=���1(1 + �)�1.

The density of the SN(�; �2; � 2)-distribution is thus proportional to the density of the

N(�; �2)-distribution to the left of the mode, �, whereas to the right of the mode it is

proportional to the density of the N(�; � 2�2)-distribution. For � < 1 the distribution is

skewed to the left, for � > 1 it is skewed to the right and for � = 1 it reduces to the usual

symmetric normal distribution.

The following result will be useful in the sequel.

Lemma 1 If x � SN(�; �2; � 2); then

E(x) = �+
p
2=��(� � 1)

V ar(x) = b�2

�1
def
=
E[fx� E(x)g3]
[V ar(x)]3=2

= b�3=2
p
2=�(� � 1)[(4=� � 1)(� � 1)2 + � ]

�2
def
=
E[fx� E(x)g4]
[V ar(x)]2

= b�2
�
3(1 + � 5)=(1 + �)� 4��2(1� �)2

�
(3 + �)(1 + � 2) + 3(� � 2)�

�	
�x(t)

def
= E(etx) =

2�
�
exp(��2t2=2)�(��t) + � exp(��2� 2t2=2)�(���t)

	
�(1 + �) exp(�t)

where b = ��2
�
(� � 1)2 + � , �1 and �2 are the usual measures of univariate skewness and

kurtosis, and �x(t) is the moment generating function.

The following de�nition is a natural generalization of the univariate split normal distribu-

tion in John (1982) to the multivariate setting and is a reparametrization of the multivariate

split normal distributions in Geweke (1989) and one of the members of the Ferreira-Steel

family (Ferreira and Steel, 2004).
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Figure 1: Contours of the bivariate split normal density with � = (�1; 2), � = (1; �; �; 1).

De�nition 2 A vector x 2 Rp follows the q-split normal distribution, x � SNp(�;�; � ;Q),

if its principal components are independently distributed as

v0jx �

8<: SN(v0j�; �
2
j ; �

2
j) if j 2 Q

N(v0j�; �
2
j) if j 2 Qc;

where Q � f1; :::; pg of size q, Qc = f1; 2; :::; pgnQ is the complement of Q, vj is the

eigenvector corresponding to the jth largest eigenvalue in the spectral decomposition of � =

V �V 0, � = diag(�21; :::; �
2
p) and � = (� j)j2Q is a q-dimensional vector of contraction/dilation

parameters.

Consider the case Q =frg for illustration, i.e. where only the rth principal component

has a skewed distribution. It is then easy to see that the density of x is

f(x) =

8<: c � exp
�
�1
2
(x� �)0��1(x� �)

	
if v0r(x� �) � 0

c � exp
n
�1
2
(x� �)0�̂�1(x� �)

o
if v0r(x� �) > 0;

where �̂ = V �̂V 0, �̂ = diag(�21; :::; �
2
1�
2
r; :::; �

2
p) and c

�1 = 1
2
(2�)p=2 j�j1=2 (1 + � 1). This

should be compared to the univariate case in De�nition 1. Figure 1 illustrates three possible

shapes of the SN2(�;�; � ;Q)-distribution. The general SNp(�;�; � ;Q)-distribution amounts

to using di¤erent multivariate normal distributions, all with mode �, over 2q regions of Rp

separated by the q hyperplanes v0j(x � �) = 0, for j 2 Q. The normal and split normal

distributions in De�nition 2 may obviously be replaced by other distributions, e.g. the t

distribution as in Geweke (1989) or, more generally, the Fernandez-Steel family (Ferreira

and Steel, 2004).

Before stating some properties of the SNp(�;�; � ;Q) distribution we need to de�ne skew-

ness and kurtosis for a multivariate distribution. The most widely used measures are based
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on the Mahalanobis distance

Mxz = (x�m)0S�1(z �m);

where x and z are two p-dimensional independent identically distributed random vectors

with mean m and covariance matrix S. Mardia (1970) used Mxz to de�ne the multivariate

skewness

�1;p = E(M
3
xz):

Note that if x � Np(�;�), then �1;p = 0. �1;p is related to the univariate skewness through

�1;1 = �
2
1. The multivariate kurtosis is de�ned as

�2;p = E(M
2
xx):

If x � Np(�;�), then �2;p = p(p + 2). Note also that �2;1 = �2. We are now ready to

generalize Lemma 1 to the multivariate setting.

Theorem 2 If x � SN(�;�; � ;Q) then

E(x) = �+
p
2=�

X
Q
�j(� j � 1)vi

V ar(x) = V ~�V 0

�1;p =
X
Q
b�3j (2=�)(� j � 1)2[(4=� � 1)(� j � 1)2 + � j]2

�2;p = p(p+ 2) +
X
Q
b�2j rj � 3q;

�x(t) =

"Y
Q

2�i
�
exp[�(�jv0jt)2=2]�(��jv0jt) + � j exp[�(�j� jv0jt)2=2]�(��j� jv0jt)

	
�j(1 + � j) exp(�jv

0
jt)

#

� exp
(X

Qc
[�jv

0
jt�

1

2
(v0jt)

2�2j ]

)

where bj = ��2
�
(� j�1)2+ � j for j 2 Q, ~� is a diagonal matrix with ith element equal to �2j if

j 2 Qc or bj�
2
j if j 2 Q, rj = 3(1+� 5j)=(1+� j)�4��2(1�� j)2

�
(3 + �)(1 + � 2j) + 3(� � 2)� j

�
and �x(t) = E[exp(t

0x)] is the moment generating function for the random vector x.
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3. INFERENCE

3.1 NOTATION

The following notation will be used throughout the rest of the paper. Let x = (x1; :::; xn)0

denote the n� p matrix containing a random sample from the SN(�;�; � ;Q) distribution.

Let zij = v0j(xi � �) be the demeaned score of xi on the jth principal component and

Z = (zij) = (x � �n�0)V the n � p matrix of demeaned principal component scores for

the whole sample, where �n is an n dimensional vector of ones. On any such demeaned

principal component score matrix Z we de�ne the sets Ij(Z) = fi 2 f1; :::; ng : zij � 0g,

j = 1; :::; p. Ij thus contains the indicies of the observations with a non-positive score on the

jth demeaned principal component. Furthermore, let nj = jIjj and Icj = f1; :::; ngnIj. Let

VQ = (vj)j2Q and �Q = diag(�
2
j)j2Q denote the matrix of eigenvectors and diagonal matrix

of eigenvalues corresponding to the principal axes de�ned by Q. VQc and �Qc are de�ned

analogously. Furthermore, ZQ = (zj)j2Q = (x � �n�0)VQ, where zj denotes the jth column

of Z, and ZQc is de�ned correspondingly. Finally, zl;j = (zij)i2Ij and zu;j = (zij)i2Icj .

3.2 MAXIMUM LIKELIHOOD

Maximum likelihood estimation of the parameters in the split normal distribution is

treated in John (1982) and Mudhokar and Hudson (2000). Our next result shows that it is

possible to maximize the likelihood analytically w.r.t. � and � in the multivariate case.

Theorem 3 Given a random sample of vectors x1; :::; xn from SN(�;�; � ;Q), where � =

V �V 0, the likelihood, maximized w.r.t. � and � is

bL (�; V;Q) = 2(q�p=2)nnqn=2

(�e)pn=2

Y
j2Qc

b�j (�; V )�nY
j2Q

gj (�; V )
�3n=2 ;

where

gj (�; V ) = s
1=3
1j + s

1=3
2j ;

s1j =
P

Ij z
2
ij, s2j =

P
Icj
z2ij; and the maximum likelihood estimators of �2j and � j are

b�2j (�; V ) =
8<: 1

n
s
2=3
1j gj (�; V ) if j 2 Q;

1
n

Pn
i=1 z

2
ij if j 2 Qc;

and b� j (�; V ) = �s2j
s1j

�1=3
:
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We may use this theorem for numerical maximization of the likelihood w.r.t. � and V ,

for a given Q. In the two-dimensional case, V may be explicitly parametrized as

V =

0@ cos � � sin �

sin � cos �

1A ; � �
2
< � � �

2
: (1)

A similar parametrization of V is available in the general case using generalized Eulerian

angles (Khatri and Mardia, 1977). Hence, maximization over V and � is straightforwardly

performed with standard numerical optimization algorithms over a fairly low-dimensional

parameter space. Alternatively, Edelman, Arias and Smith (1998) have developed optimiza-

tion algorithms on the Stiefel manifold (the set of orthonormal matrices) which avoid an

explicit parametrization of V .

3.3 BAYESIAN INFERENCE

The joint posterior distribution of all parameters may be written as

p(�; V; �; � ;Qjx1; :::; xn) = p(�; V; �; � jQ; x1; :::; xn)p(Qjx1; :::; xn):

Let us �rst focus on p(�; V; �; � jQ; x1; :::; xn) and subsequently turn to the posterior inference

of Q.

We will assume independence between �; V; � and � a priori. The following priors will

be used for � and the ��s

� � Np(�0;
0);

��2j � Ga(j; �j); j = 1; :::; q;

with independence between the ��s a priori. All gamma distributions are parametrized so

that, for example, E(��2j ) = j�
�1
j .

We will take the prior density for (��21 ; :::; �
�2
p ) to be proportional to the product of

Ga(�j; �j) densities, j = 1; :::; p, except on the subset of Rp where the order restriction is

violated where the prior density is de�ned to be zero.

The space of V is the oriented orthogonal group O+(p) = fV 2 Rp�p : V 0V = Ip and

v1j > 0 for j = 1; :::; pg. The usual de�nition of a uniform distribution on O+(p) is the

conditional Haar invariant distribution (Anderson, 1958). To illustrate this distribution,

consider the bivariate case where V may be explicitly parametrized as in (1). In this case,
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the conditional Haar invariant distribution reduces to a uniform distribution on the angle �

(James, 1954). Other more informative priors may be de�ned with respect to this uniform

measure, for example the matrix Fisher (MF) distribution introduced by Downs (1972) and

further studied by Khatri and Mardia (1977). The matrix Fisher density is of the form

p(V ) =

�
0F1

�
p

2
;
1

4
F 0F

���1
exp(trF 0V )[dV ];

where F = V��� is the polar decomposition of F , with V� 2 O(p) and �� is positive de�nite,

and [dV ] is the probability element of V onO(p). The hypergeometric function 0F1
�
p
2
; 1
4
F 0F

�
will cancel in all posterior computations (see the Metropolis-Hastings algorithm below) and

hence need not be evaluated. The fact that the matrix of eigenvectors is restricted to have

positive �rst element in each column only a¤ects the matrix Fisher density by a constant

and may be disregarded for the purposes here. The matrix Fisher density has mode equal

to V�, and K� controls the spread around the modal point (Downs, 1972). It will often be

su¢ cient to set K� = diag(k1; :::; kp). In typical applications one would even set some of the

ki to zero (zero precision) to have an informative prior only in certain directions. Note also

that since V is orthonormal, one of the columns of V is completely determined by the others

and one of the ki is therefore redundant. As an example, consider the bivariate case in (1).

In this case the matrix Fisher density is proportional to exp[(k1 + k2) cos (� � �)], where �

and � are the angles of V and V�, respectively. Clearly one of k1 and k2 may be set to zero

without restricting the prior.

The posterior distribution of �; V; �; � conditional on Q is intractable. We shall sample

from this distribution by iteratively sampling from the posterior distribution of each para-

meter conditional on the previous draw of all other parameters, the so called full conditional

posteriors. This simulation technique is usually referred to as Gibbs sampling (Gilks et al.

(1996)). The full conditional posteriors are given in the next result.

Proposition 4

� Full conditional posterior of �j

��2j j�; V; ��j; � ;Q; x �

8><>:
Ga
�
�j +

n
2
; �j +

z0jzj
2

�
if j 2 Qc

Ga

�
�j +

n
2
; �j +

z0l;jzl;j+�
�2
j z0u;jzu;j
2

�
if j 2 Q

:
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� Full conditional posterior of � j

p(��2j j�; V; �; ��j;Q; x) / (��2j )j�1(1 + � j)�n exp
"
���2j

 
�j +

��2j z
0
u;jzu;j

2

!#
:

� Full conditional posterior of V

p(V j�; �; � ;Q; x) / exp
(
�1
2

"
��1
Qc
Z 0QcZQc +

X
j2Q

��2j
�
z0l;jzl;j + �

�2
j z

0
u;jzu;j

�#)
:

� Full conditional posterior of �

p(�jV; �; � ;Q; x) / exp
�
�1
2

�
a(�) + (�� ��)0(V ���1V 0 + 
�10 )(�� ��)

��
;

where �� = diag(l1; :::; lp), lj = n�1�
2
j for j 2 Qc and lj = [nj + ��2j (n� nj)]�1�2j for j 2 Qc,

�� = (V ���1V 0 + 
�10 )
�1

 
�0 +

pX
j=1

��2j vjv
0
jwj

!
;

where wj = n�x if j 2 Qc and wj = nj�xj + ��2j (n� nj)�xcj if j 2 Q, and

a(�) =
X
j2Q

��2j tr vjv
0
j

0@X
i2Ij

xixi
0 + ��2j

X
i2Icj

xixi
0

1A� ��0(V ���1V 0 + 
�10 )��:

The full conditional posterior of �1; :::; �p is easily sampled using a standard generator

of Gamma variates. A draw which violates the order restriction �1 � � � � � �p is simply

rejected with probability one.

The full conditional posteriors of � j, V and � are non-standard, and the Metropolis

Hastings (MH) algorithm (see e.g. Gilks et al. (1996) for a description) will be used to

generate variates from these three distributions. The overall algorithm then falls within the

class of Metropolis-within-Gibbs algorithms. The MH-proposals for ��2j will be sampled

from ��2j � Ga(�j; �j) with �j = �j +2�1(��2j z0u;jzu;j), and �j chosen so that the mode of the

proposal density matches that of the full conditional posterior of ��2j :

�j = 1 +
�j
9

�
dj
�j
+
3(j � 1) + �j

dj
� 1
�2
;

where

dj = �
2=3
j

�
9(j � 1) +

27n

4
� �j + 33=2�

�1=2
j

�
(1� j)3 + gj�j + (1� j �

n

2
)�2j

�1=2�1=3
9



and

gj = 2� 4j + 22j �
9(1� j)n

2
+
27n2

16
:

We now turn to the proposal for �. Note that when � attraverses Rp the index sets

I1; :::; Ip change in a discrete fashion, which in turn brings forth changes in a(�) in the full

conditional posterior of �. The full conditional posterior of � is therefore not a multivariate

normal distribution, but is locally proportional to the Np[��; (V ���1V 0 + 
�10 )
�1] density on

the subsets of Rp where a(�) is constant. This suggests the following two reasonable proposal

densities: �t+1 � Np[��; h(V ���1V 0+
�10 )�1] or �t+1 � Np[�t; h(V ���1V 0+
�10 )�1], where �t
is the candidate draw at iteration t and h > 0 is a scaling factor to �ne tune the algorithm.

A proposal for V is constructed by applying a randomGivens rotation (see e.g. Golub and

Van Loan, 1996) to the columns of the current V .2 TheGivens matrix for the (i; j) coordinate

plane in Rp, denoted by Gij(�ij), is p � p with unities on the diagonal except in the (i; i)

and (j; j) positions which are equal to cos �ij, and all o¤-diagonal elements are zero except

in the (i; j) and (j; i) positions which contain sin �ij and � sin �ij, respectively for j > i. For

example, the matrix in (1) is the only Givens matrix in R2. Note that postmultiplication of

V by Gij(�ij) amounts to a counterclockwise rotation of �ij radians of the coordinate plan

spanned by the ith and the jth column of V . The coordinate plane (i; j) may be chosen

randomly from the set of p(p� 1)=2 possible coordinate planes with equal probability on all

planes and the angle �ij generated from a generalized Beta(�; �) density taking values in the

interval [��=2; �=2). The fact that �ij is distributed symmetrically around zero makes the

proposal density symmetric, i.e. q(Vt+1jVt) = q(VtjVt+1), where q(�j�) is the proposal density.

This leads to a simpli�ed version of the Metropolis-Hastings acceptance probability, where

only the target posterior density needs to be evaluated (i.e. the ratio of proposal densities

cancels in the acceptance probability, see e.g. Gilks et al. (1996)). It is of course possible to

rotate along several coordinate planes simultanously by postmultiplying with a product of

Givens matrices.

We now turn to the posterior distribution of Q

p(Qj; x1; :::; xn) / p(x1; :::; xnjQ)p(Q);
2Ferreira and Steel (2004) discuss a similar proposal distribution based on the Householder matrices.
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where

p(x1; :::; xnjQ) =
Z Z Z Z

p(x1; :::; xnj�; V; �; � ;Q)p(�; V; �; � jQ)d�dV d�d�;

is the marginal likelihood of the model with q skewed principal components given by Q and

p(Q) is the prior distribution over the set of Q�s.

The marginal likelihood, p(x1; :::; xnjQ), is not tractable but may be computed from the

posterior sample from p(�; V; �; � jQ; x1; :::; xn) using, for example, the modi�ed harmonic

mean estimator (Geweke, 1999). It should be remarked that while it is possible to use

vague, or even improper (e.g. the usual non-informative densities), priors on all model

parameters in the computation of p(�; V; �; � jQ; x1; :::; xn), this is no longer sensible if also

q is analyzed as this will produce meaningless, or even indeterminate, marginal likelihoods

(O�Hagan (1995) is a clear account). It is su¢ cient, however, to use a proper prior on � ; �; V

and � may still be assigned vague/improper priors as the dimension of their spaces does not

vary with Q.

4. EMPIRICAL ILLUSTRATION

4.1 DATA AND MODELS

We illustrate the proposed inferential procedures on a data set on track records for 55

nations. The data are taken from the IAAF/ATFS Track and Field Statistics Handbook for

the 1984 Los Angeles Olympics. Dawkins (1989) uses this data set to analyze eight di¤erent

track events ranging from 100 meters to the marathon. Separate analyses are made for men

and women. Here we restrict the analysis to the 1,500 meters event, but analyze men and

women jointly. The observations are measured in minutes.

A scatter plot of the raw data is displayed in all of the subgraphs in Figure 2. The

skewness in the distribution is clearly visible. We investigate this formally by comparing the

following three models:

1. Symmetric model. Q = ?, q = 0:

2. Skewness in the �rst principal component. Q = f1g, q = 1:

3. Skewness in both principal components. Q = f1; 2g, q = 2.

Note that we have excluded the model with skewness in only the second principal com-

ponent (Q = f2g). We will refer to these three models by the number of skewed principal

11
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Figure 2: Data on national track records for the 1,500 meter event for women (horizontal

axis) and men (vertical axis). Observations are in minutes. Equal probability contours are

displayed for the three models with posterior mean estimates of the parameters. The prior

with � = 1 is used.

components, q.

4.2 LIKELIHOOD ANALYSIS

The parameter estimates and maximum log likelihoods (log bLq) of our three tentative
models are shown in Table 1.

Table 1. Results from likelihood analysis.

Model b�1 b�2 b� b�21 b�22 b� 1 b� 2 log bLq
q = 0 4:33 3:70 0:41 0:0046 0:13 � � 48:35

q = 1 4:01 3:56 0:41 0:0035 0:0046 � 8:88 59:48

q = 2 4:02 3:52 0:38 0:0007 0:0035 3:54 8:87 65:68

The likelihood ratio test, i.e. �2
�
log bL0 � log bL1�, of q = 0 against q = 1 gives a test

statistic of 22:3, which has a p-value of 2�10�6 with respect to its approximate �2 distribution

with one degree of freedom. The test of q = 1 against q = 2 gives a test statistic of 12:4, which

corresponds to a p-value of 0:0004. Thus, the likelihood analysis suggests quite strongly that

q = 2.

4.3 BAYESIAN ANALYSIS

To compute the posterior distribution of q we will use a uniform prior on all parameters

except the asymmetry parameters in � . For the sake of presentation we will consider what

may be called a sceptics prior for � which centers over the symmetric model, i.e. E(��21 ) =

12



E(��22 ) = 1. Speci�cally, we assume that

��21 � Ga(�; �);

��22 � Ga(2�; 2�);

where � may be used to adjust the precision of the prior around the mean of unity. Note

that the prior becomes tighter around the symmetric model as � increases and that the prior

variance of ��22 is one half that of ��21 , re�ecting the judgement that the second principal

component is more likely to be symmetric than the �rst.

All presented Bayesian analyses are based on 100; 000 draws from the posterior. The

second proposal distribution for � was used. No convergence problems were encountered.

The posterior distribution of q is given in Table 1 for several di¤erent values for �. The

Bayesian analysis is in favor of q = 1, unless the prior is very tightly concentrated around

the symmetric model (� = 50), but there is also a relatively large posterior probability on

q = 2. Figure 2 shows the density of the three models with the posterior mean estimates of

the parameters in each model (based on the prior with � = 1). The symmetric model (q = 0)

appears to �t the data poorly with too few observations near the center of the density. The

model with one skewed principal component does a much better job. The improvement in

model �t from the even larger model (q = 2) seems to be modest.

One way to investigate the �t of the models more formally is by posterior predictive

analysis (Gelman et al., 2004)3. The basic idea is that simulated data from a well speci�ed

model should not look too di¤erent from the actual data. An advantage of the Bayesian

approach is that it is not necessary to condition on a speci�c parameter value when simulating

the data; we may simply average across the draws from the posterior distribution. One

needs of course to specify the dimensions in which the simulated data should cohere with

the actual data, and one natural quantity to analyze here is the sample analogue of Mardia�s

multivariate skewness measure (Mardia, 1970). The observed skewness in the actual data is

7:599. The probabilities of obtaining an at least as large skewness in the simulated posterior

predictive distribution, the so called posterior predictive p-value, are 0; 0:8 � 10�4 and 1:2 �
3An alternative procedure is to embed the three models under consideration in a larger class of models

and compute the posterior distribution over this model class. Such an approach has a more direct Bayesian

motivation, but the posterior predictive analysis has the advantage that it can be used to detect model

misspeci�cation in speci�c dimensions (e.g. skewness).
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10�4 in the models with q = 0; 1 and 2, respectively. This is a clear indication of model

misspeci�cation. The reason for this lack of �t is clear from Figure 2: none of the models

come even close to capturing the two outliers in the north and north-east part of the �gure

(Cook Islands andWestern Samoa). When these two observations are excluded, the posterior

predictive p-value increases dramatically to 0:087, 0:423, 0:450 in the models with q = 0; 1

and 2, respectively. The skewness in the symmetric model is still on the borderline of

acceptance, while the two skewed models now capture the skewness in the data quite well.

It is interesting to note that excluding the two outliers does not have drastic e¤ects on the

inference. For example, the posterior distribution for q in the smaller data set is 0:006; 0:766

and 0:228, for q = 0; 1 and 2, respectively (based on the prior with � = 1), which is in line

with the results for the full data set. Other aspects of the inferences, e.g. the posterior

distribution of the model parameters (see below), were also fairly robust to the exclusion of

the two outliers (the main e¤ect was on the posterior distribution of � 1, which shifted toward

a smaller skewness). We analyze the full data set in the following.

We condition the remaining analysis on q = 1 and the prior with � = 1. The marginal

posterior distributions of the models parameters are displayed in Figure 3; the eigenvectors in

V will be analyzed below. The upper right sub�gure shows that the posterior uncertainty of

� 1 is rather large but that the point of symmetry, � 1 = 1, does not belong to any reasonably

sized probability interval. Note that the gamma prior on ��21 has been converted into a prior

for � 1, which belongs to square-root-inverted gamma family (Bernardo and Smith, 1994).

Alternatively, one may look at the multivariate skewness in the upper right sub�gure of

Figure 3. The posterior distribution of the skewness is computed by inserting the posterior

draws of � 1 into the expression for the multivariate skewness in Theorem 2. The lower

left sub�gure shows that the proportion of total variance explained by the �rst principal

component is rather close to unity.

Table 2. Posterior distribution of q for di¤erent values on the prior hyperparameter �.

Model �=.1 �=.5 �=1 �=3 �=5 �=10 �=50

q = 0 0.000 0.000 0.000 0.002 0.018 0.133 0.468

q = 1 0.845 0.703 0.686 0.680 0.624 0.560 0.361

q = 2 0.155 0.297 0.314 0.318 0.358 0.307 0.172

Table 3. Ranking of nations based on the principal component with largest eigenvalue.
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Figure 3: Posterior inferences conditional on q = 1. The prior with � = 1 is used.

Nation Women Men Post. mean Post. distr. of overall rank (1st PC)

U.S. 2nd 3rd 1st 1st (1.00)

G. Britain 9th 1st 2nd 2nd (0.82), 3rd (0.17)

U.S.S.R. 1st 13th 3rd 2nd (0.17), 3rd (0.82), 4th (0.01)

F. Rep. of Ger. 8th 2nd 5th 3rd (0.01), 4th (0.10), 5th (0.89)

German D. Rep. 3rd 8th 4th 4th (0.89), 5th (0.16)

Note: Second and third columns give the nation�s rank for men and women separately. The

fourth column contains the ranking based on the posterior mean of �rst principal component

(q = 1). The last column displays the posterior distribution of the overall rank based on the

�rst principal component (q = 1).

The mean acceptance probabilities for the model with q = 1 were 0:581, 0:759 and 0:975,

for V; � and � , respectively. The very large acceptance probability of � is a result of the

Gamma proposal being a very accurate approximation of the full conditional posterior, so

that the Metropolis-Hastings � -step is essentially a Gibbs step.

The principal components are not invariant to the scale of the original variables. To
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analyze the principal components in some more detail, we scale both variables to have unit

variance. The ML estimate of the Euler angle � is 0:777. The posterior mean of � is 0:787,

which translates into the eigenvector v1 = (0:706; 0:708)0. The �rst principal component

may therefore be interpreted as an overall measure of performance on 1; 500 meters for both

women and men. The posterior distribution of the �rst principal component xv1 thus gives

us the posterior distribution of the overall rank. Table 3 displays the posterior distribution

of the overall rank for the top �ve nations. The good performance of the U.S. for both men

and women places them unambigously �rst in the ranking. It is also possible to compute the

posterior probability that e.g. Norway (rank 15 according to the posterior mean of the 1st

PC) is better than Kenya (rank 11 according to the posterior mean of the 1st PC), which is

0:173.

APPENDIX A

A.1 PROOF OF LEMMA 1

The expressions for the mean, variance and moment generating functions can be found

in John (1982). The skewness and kurtosis of a univariate split normal variable are easily

derived from the moments in John (1982), see Larsson and Villani (2003) for details.

A.2 PROOF OF THEOREM 2

Since x = V y, where y is the vector of principal components, we have

E(x) = V E(y) =
X
Q
vj[v

0
j�+

p
2=��j(� j � 1)] +

X
Qc
vjv

0
j� = �+

p
2=�

X
Q
�j(� j � 1)vj;

and

V ar(x) = V � V ar(y) � V 0 =
pX
i=1

V ar(yj)vjv
0
j =

X
Q
bj�

2
jvjv

0
j +
X
Qc
�2jvjv

0
j = V �QV

0;

using Lemma 1.

The expression for the multivariate skewness may be proved as follows. Since x = V y,

where y are the principal components of x,

�1;p(x) = �1;p(V y) = �1;p(y);

by the invariance of �1;p under linear transformations (Mardia, 1970). Let v and w be

independent random vectors from the same distribution of y, m = (m1; :::;mp)
0 = E(y) and
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V ar(y) = ~� = Diag(�21; :::; �
2
p), where �

2
j = �2j if j 2 Qc and �2j = bj�

2
j if j 2 Q. By

de�nition, �1;p(y) = E(M
3
vw), where Mvw may be decomposed as

Mvw = (v �m)0~��1(w �m) = �pj=1��2j (vj �mj)(wj �mj) = �
p
j=1Mvjwj ;

and therefore

M3
vw = �

r1+:::+rp=3

3!

r1! � � � rp!
M r1
v1w1

� � �M rp
vpwp :

Since E(Mvjwj) = 0 for j = 1; :::; p, by the independence of the elements of v and w, we have

E(M3
vw) = �

p
j=1E(M

3
vjwj

);

which proves that

�1;p(y) = �
p
j=1�1;1(yj).

Since �1;1 = �
2
1 and �j = 0 for j 2 Qc, the result now follows from Lemma 1.

To derive the multivariate kurtosis, note that

�2;p(x) = �2;p(V y) = �2;p(y);

by the invariance of �2;p under linear transformations (Mardia, 1970). Now, by the diago-

nality of V ar(y) = ~�,

M2
yy = �

p
j=1M

2
yjyj

+ 2
X
i<j

MyiyiMyjyj :

Thus,

E(M2
yy) = �

p
j=1E(M

2
yjyj
) + p(p� 1):

since E(MyiyiMyjyj) = E(Myiyi)E(Myjyj) = 1 for j = 1; :::; p. Thus

�2;p(y) = �
p
j=1�2;p(yj) + p(p� 1) =

X
Q
�2(yj)� 3q + p(p+ 2):

since �2;p(yj) = �2(yj) and �2(yj) = 3 for j 2 Qc. The result now follows fromLemma 1.

The moment generating function can be written

�x(t) = E[exp(t0x)] = E[exp(t0V y)] =
Y
Qc
E[exp(t0vjyj)]

Y
Q
E[exp(t0vjyj)]

=
Y
Qc
�yj(v

0
jt)
Y
Q
�yj(v

0
jt) = exp

(X
Qc
[�jv

0
jt�

1

2
(v0jt)

2�2j ]

)Y
Q
�yj(v

0
jt);
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where, using Lemma 1,

�yj(v
0
jt) =

2�j
�
exp[�(�jv0jt)2=2]�(��jv0jt) + � j exp[�(�j� jv0jt)2=2]�(��j� jv0jt)

	
�j(1 + � j) exp(�jv

0
jt)

for j 2 Q.

A.3 PROOF OF THEOREM 3

The Jacobian of the transformation from x to Z = (x��n�0)V is unity. Thus, by de�ning

c1 =

�
1p
2�

�p�q r
2

�

!q
;

the likelihood function can be written

L(�;�; � ;Q) = cn1

(Y
j2Q

1

�nj (1 + � j)
n
exp

"
� 1

2�2j

�
z0l;jzl;j + �

�2
j z

0
u;jzu;j

�#)

�
(Y
j2Qc

��nj exp

�
���2j

z0jzj

2

�)
=
Y
j2Qc

L1;j (�j)
Y
j2Q

L2;j (�j; � j) ; (2)

where and L1;j (�j) is the likelihood arising from observations of n independent N
�
0; �2j

�
variables and L2;j (�j; � j) is the likelihood arising from observations of n independent uni-

variate SN (0; �j; � j) variables. Hence, from the maximum likelihood estimator of the uni-

variate split normal distribution in Mudhokar and Hudson (2000) and standard theory, the

likelihood maximized w.r.t. � and � is

bL = c2 Y
j2Qc

b��nj Y
j2Q

g
�3n=2
j ;

where

c2 =

�
1

2�e

�(p�q)n=2�
2n

�e

�qn=2
=
2(q�p=2)nnqn=2

(�e)pn=2
;

and b�2j (�; V ), b� j (�; V ) and gj(�; V ) are given in the theorem.
A. 4 PROOF OF PROPOSITION 4

The full conditional posteriors of �j and � j follow directly from multiplying the likelihood

in (2) with the priors ��2j � Ga(�j; �j) and ��2j � Ga(j; �j), respectively.

To obtain the full conditional posterior of V we rewrite the �rst factor of the likelihood

as follows

Y
j2Qc

��nj exp

�
���2j

z0jzj

2

�
/ exp

 
�1
2

X
j2Qc

��2j z
0
jzj

!
= exp

�
�1
2
tr ��1

Qc
Z 0QcZQc

�
:
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Combining this factor with the factor of the likelihood function corresponding toQ we obtain

the result in Proposition 4.

The full conditional posterior of � reads

�1
2
ln p(�j�) /

X
j2Qc

��2j z
0
jzj +

X
j2Q

��2j

0@X
i2Ij

z2ij + �
�2
j

X
i2Icj

z2ij

1A (3)

Let us rewrite this expression to show explicitly its dependence on �. All terms which do

not involve � will be discarded. Note �rst thatX
i2Ij

z2ij =
X
i2Ij

[v0j(xi � �)]2 = trAj
X
i2Ij

xixi
0 + nj(�

0Aj�� 2�0Aj�xj);

where Aj = vjv0j, and

��2j
X
i2Icj

z2ij = trAj�
�2
j

X
i2Icj

xixi
0 + ��2j (n� nj)(�0Aj�� 2�0Aj�xcj)

where �xj = n�1j
P

i2Ij xi and �x
c
j = (n� nj)�1

P
i2Icj

xi. Thus,

X
j2Q

��2j

0@X
i2Ij

z2ij + �
�2
j

X
i2Icj

z2ij

1A = B0 + �
0B�� 2�0b; (4)

where B0 =
P

j2Q �
�2
j trAj

�P
i2Ij xixi

0 + ��2j
P

i2Icj
xixi

0
�
, B =

P
j2Q �

�2
j vjv

0
j[nj+�

�2
j (n�

nj)] and b =
P

j2Q �
�2
j vjv

0
j[nj�xj + �

�2
j (n� nj)�xcj]. Correspondingly,X

j2Qc
��2j z

0
jzj = C0 + �

0C�� 2�0c; (5)

where C0 =
P

j2Qc �
�2
j tr(Aj

Pn
i=1 xixi

0) = tr(x0xVQc�
�1
Qc
V 0Qc), C = n

P
j2Qc �

�2
j vjv

0
j and

c = n
P

j2Qc �
�2
j vjv

0
j�x. Inserting (4) and (5) in (3), adding the logarithm of the normal prior

density, completing the quadratic form and simplifying proves the result.
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