

.

.

1

StudyEnergyWeb.fme.vutbr.cz Absolver6-exergetik pilpreven pro trh proteo	evropský	
STUDIJNÍ LITERATURA	INVESTICE DO ROZVOJE	UNIE pro konkursecescheprost
http://studyenergyweb.fme.vutbr.cz/s omechaniky/ http://studyenergyweb.fme.vutbr.cz/s	sew/category/odbortermomechani sew/category/odbortermomechani	ky/seminar_aplikovane_term ky/termomechanika/
http://www.energetickeforum.cz/fsi-v	<u>-brne/vzdelavaci-kurzy/</u>	SCHAUM'S
http://www.mbha.com	THERMODYNAMICS	THERMODYNAMICS FOR ENGINEERS
Thermodynamics	A new report would have	HEAL C. FATTS CALE & CALE & CALE & CALE
■ 1 2 3 4 5 6 7 8 9 10	254	shalf

StudyEnergyWeb.fme.vutbr.cz Abstiveri-energetik ptfpreven pro th proce	
STAVOVÉ VELIČINY	INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
STAVOVÉ VELIČINY určují sta	v soustavy
Rozlišujeme: a) STAVOVÉ VELIČINY MĚŘITI	ELNÉ
• Tlak	
Teplota	
 Měrný objem 	
> Objem	
Hmotnost	
Látkové množství	
 b) STAVOVÉ FUNKCE počítané z měřitelných stavový 	rch veličin Vnitřní energie U, entalpie H, entropie S
 c) FYZIKÁLNÍ VLASTNOSTI Měrná tepelná kapacita c, souč viskozita ν 	initel tepelné vodivosti <i>A</i> , teplotní vodivosti <i>a</i> , kinematická
■ 111 12 13 14 15 16 17	18 254

StudyEnergyWeb.fme.vutbr.cz	evropský sociální
PLYNOVÁ KONSTANTA	fond v CR EVROPSKÁ UNIE pro konkurresentarprovet 20000 NVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Měrná plynová konstanta r [J.kg ⁻¹ .K ⁻	¹] určí se pro jednotlivé plyny z tabulek nebo VÝPOČTEM
Odvození z Avogadrova zákona	$M \cdot v = V_m = konst.$
a ze stavové rovnice	$r = \frac{p \cdot v}{\tau}$
Při normálních fyzikálních podmínká	ách <i>p</i> = 101325 Pa a <i>T</i> = 273,15 K je
V _m = 22,4136 m ³ .kmol ⁻¹ pro všechny	plyny a lze psát
$Mr = \frac{pvM}{T} = \frac{pV_m}{T} = \frac{101325 \times 1000}{273}$	$\frac{22,4136}{8,15} = 8314,3\pm1,2 \text{J.kmol}^{-1}.\text{K}^{-1}$
Univerzální plynová konstanta	$R_m = 8314, 3 \text{ J.kmol}^{-1}.\text{K}^{-1}$
Výpočet plynové konstanty <i>r</i>	$r = \frac{R_m}{M}$
■ 130 31 32 33 34 35 36 37	. 254

StudyEnergyWeb.fme.vutbr.cz	
ZÁKLADNÍ TVARY STAVOVÉ ROVNICE	OP VrdHahar EVROPSKÁ UNIE pro konkuretekterprost
Stavová rovnice pro 1 kg ideálního plynu	$p \cdot v = r \cdot T$
Stavová rovnice pro <i>m</i> kg ideálního plynu	$p \cdot V = m \cdot r \cdot T$
Vynásobením rovnice pro 1 kg molární hmotnost všeobecnou stavovou rovnici ideálního plynu	í <i>M</i> dostaneme
$p \cdot V_m = M \cdot r \cdot T$ nebo p	$v \cdot V_m = R_m \cdot T$
kde $V_m = M \cdot v$ a $R_m = M \cdot r$	
Vynásobením všeobecné stavové rovnice látkový rozšířenou všeobecnou stavovou rovnici ideálníh	γm množstvím <i>n</i> získáme no plynu
$\rho \cdot V = n \cdot R_m \cdot T$ kde $V = n \cdot V_m$	
■ 130 31 32 33 34 35 36 37254	

StudyEnergyWeb.fme.vutbr.cz	
MAYERŮV VZTAH	INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Odvození Mayerova vztahu 1. forma I. zákona termodynamiky Stavová rovnice ideálního plynu	$dq = c_v \cdot dT + p \cdot dv$ $pv = rT \Rightarrow pdv + vdp = rdT$
Po dosazení <i>p.dv</i> do 1. formy …	$dq = c_v \cdot dT + r \cdot dT - v \cdot dp$
Pro izobarický děj <i>dp</i> = 0	$c_p \cdot dT = c_v \cdot dT + r \cdot dT$
Mayerův vztah	$C_{p} = C_{v} + \Gamma$
Poissonova konstanta	
1-atomové plyny $\kappa = 1,67$ 2-atomové plyny $\kappa = 1,41$ 3-atomové plyny $\kappa = 1,30$	$K = \frac{C_{\rho}}{C_{\nu}}$
	254

StudyEnergyWeb.fr Absolvent-energetik pitpreven p	me.vutbr.cz	evropský	0 🛛	
STAVOVÉ VEL SMĚSI PLYNŮ MÍŠENÍ PLYNŮ DŘI	\mathbf{L} ČINY	INVESTICE DO Re	EVROPSKÁ UNIE pro konkret OZVOJE VZDĚLÁVÁ	ekishishi niceschigtmast Reinfold NÍ
Před míšením:	V ₁ , m ₁ , r ₁	V ₂ , m ₂ , r ₂	5	Stavové
	ro		p·V,	$= m_i \cdot r_i \cdot T$
Po míšení:	$V = V_1 + V_2, I$	$m = m_1 + m_2, \mu$	r s	Stavová
	ro		$p_i \cdot V =$ Stavov $p \cdot V = U$	<i>m_l · r_l · T</i> vá rovnice <i>m · r · T</i>
Problém je určit měrnou plynovou konstantu směsi / a další termodynamické vlastnosti				
DALTONŮV ZÁKO Tlak ve směsi se r daných jejich stav	N (1807): ovná součtu tlaků j ovými rovnicemi.	ednotlivých plynů (parciálních tlaků)	$\rho = \sum_{i} \rho_{i}$
■ 132 33 34	35 36 37 38 39 4	40 254		

StudyEnergyWeb.fme.vutbr.cz	
VLASTNOSTI SMĚSI PLYNŮ	Socialini por Vedebadi secondariana secondaria secondar
Ze známého složení směsi lze vypočí tabulkách), a to pomocí:	tat různé vlastnosti směsi (nebývají v
rovnice zachování hmotnosti	$m = \Sigma m_i$
rovnice zachování látky	$n = \Sigma n_i$
rovnice zachování energie	$m.c.\Delta T = \Sigma m_i.c_i.\Delta T$
$\begin{array}{c} H_2 \\ 6 \text{ kg} \end{array} + \begin{array}{c} O_2 \\ 32 \text{ kg} \end{array} + \begin{array}{c} H_2 + O_2 \\ 38 \text{ kg} \end{array}$	$\begin{array}{c} H_2 \\ 3 \text{ kmol} \end{array} + \begin{array}{c} O_2 \\ 1 \text{ kmol} \end{array} + \begin{array}{c} H_2 + O_2 \\ 4 \text{ kmol} \end{array}$
STŘEDNÍ ZDÁNLIVÁ MOLÁRNÍ HMOTNOST SMĚSI <i>M</i> [kg.kmol ⁻¹]	$M = \sum M_i x_i$ kg.kmol ⁻¹
1 40 41 42 43 44 45 46 47 48 49 .	254 Copyright The McGrave-Hill Companies, Inc.

StudyEnergyW	eb.fme.vutbr.cz	evropský	1	₽ 	
VLASTNOS		fond v CR EVROPSK	ÓP Vzdělává Á UNIE pro konkurencesci	nd Status Status hepmont nutrition	
SUCHÉHO	VZDUCHU INVES	STICE DO ROZVOJ	e vzdělávání		
	Složka	X _i [%]	w _i [%]		
	Dusík N ₂	78,09	75,51		
	Kyslík O ₂	20,95	23,16		
	Argon Ar	0,93	1,28		
	Kysličník uhličitý CO ₂	0,036	0,049		
	Neon, Helium, Metan atd.	0,006	0,0001		
Fyzi 101, ≻M	kální vlastnosti vzduc 325 kPa = 28,97 kg.kmol ⁻¹	chu při 0 °C	а	tTTTT	
≻r = 287,04 J.kg ⁻¹ .K ⁻¹					
≻c _p	= 1005 J.kg ⁻¹ .K ⁻¹				
≻c _v	= 714 J.kg ⁻¹ .K ⁻¹			A STA	
₽K = 1 40 41	42 43 44 45 46 47 <mark>48 49 25</mark>	54		1-1	

StudyEnergyWeb.fme.vutbr.cz	
ENTALPIE H [J]	Fond v ČR EVROPSKA UNIE po konkurreceschoprost
Entalpie H [J], měrná entalpie h [J.kg ⁻¹] - tepl	o za konstantního tlaku $H_{12} = m \cdot h_{12}$
Definice pro ideální plyn	$dH = m \cdot c_p \cdot dT \qquad dh = c_p \cdot dT$
$ \begin{array}{l} H \text{je stavová veličina} \\ dH \text{je totální diferenciál} \\ \end{array} \int_{1}^{2} dH = H_{2} \\ \int_{1}^{2} dh = h_{2} . \end{array} $	$-H_{1} = mc_{p}(T_{2} - T_{1}) \qquad \oint dH = 0$ $-h_{1} = c_{p}(T_{2} - T_{1}) \qquad \oint dh = 0$
Odvození entalpie z děje <i>p=konstantní</i> 1. forma I. zákona pro <i>p = konstantní</i> Entalpie je teplo při <i>p = konstantní</i> Po integraci při p <i>= konstantní</i> Po seskupení veličin stavu 1 a 2	$dq_{p} = (du + da),$ dh = (du + da), $h_{2} - h_{1} = u_{2} - u_{1} + p (v_{2} - v_{1}),$ $h_{2} - h_{1} = (u_{2} + pv_{2}) - (u_{1} + pv_{1}),$
	$H = U + p \cdot V \qquad h = u + p \cdot v$

Study Energy Web, fme, vutbr.cz
Web web web with year particle
2. FORMA I. ZTD

$$dQ = dH + dA_t = c_p \cdot m \cdot dT - V \cdot dp$$

$$dq = dh + da_t = c_p \cdot dT - v \cdot dp$$

$$dq = dh + da_t = c_p \cdot m \cdot (T_2 - T_1) - \int_{1}^{2} V \cdot dp$$

$$[J]$$

$$q_{12} = \Delta H_{12} + A_{112} = c_p \cdot (T_2 - T_1) - \int_{1}^{2} v \cdot dp$$

$$[J/kg]$$
Vhodné pro otevřené soustavy, např. pro řešení kompresorů nebo zařízení kde se mění tlak i objem.

StudyEnergyWeb.fme.vutbr.cz Absolver6-exergetik pilpreven pro thi prece	evropský 🔅 🖆 🛒			
KINETICKÁ A POTENCIÁLNÍ ENERGIE	Dodal CR EVROPSKA UNIE produkterene Singer INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ			
Kinetická energie	$E_{\kappa}=mrac{w^2}{2}$			
Potenciální energie	$E_P = mgz$			
Energie soustavy bez energie proudu	$\boldsymbol{E} = \boldsymbol{E}_{\boldsymbol{K}} + \boldsymbol{E}_{\boldsymbol{P}} + \boldsymbol{U}$			
Celková energie	$E = E_{\kappa} + E_{p} + U + pV$ $E = E_{\kappa} + E_{p} + H$			
■ 160 <u>61</u> 52 63 64 65 66 67 68 69 70250				

StudyEnergyWeb.fme.vutbr.cz Atativist energitik piljirine jiri in pites ENTROPIE DEFINICE	evropský sodáh revropský sodáh evropeská unie evropeská unie evro
Entropie S [J/K] $dS = \frac{dQ}{T}$ Entropie je stavová veličina, dS je to	Měrná entropie s [J/(kg.K)] $dS = m \cdot ds$ Entropie je extenzivní veličina $ds = \frac{dq}{T}$ tální diferenciál a lze psát následující integrály: r = 0, 0, 0
Pro vratné cykly:	$dS = S_2 - S_1 \qquad \int_T ds = S_2 - S_1$ $dS = 0 \qquad \oint ds = 0$
 160616263 6465 66 67 68 65 	Entropie určuje směr vývoje soustavy Entropie umožní dokázat nevratné termodynamické děje Entropie určuje pravděpodobnost systému Entropie určuje míru disipace látky či energie Entropie určuje míru neuspořádání systému Entropie určuje míru znehodnocení kvality systému To250

StudyEnergyWeb.fme.v Absolveri-energetik pitpreven pro tith pre-	utbr.cz	opský	
PŘÍMÝ CARNO CYKLUS TERM ÚČINNOST	TŮV ICKÁ INVESTICE	ální I v ČR EVROPSKÁ UNIE pro honkurteseték E DO ROZVOJE VZDĚLÁVÁNÍ	
Termická účinnost Carn	otova cvklu		
 Závisí na teplotách, r 	nezávisí na druhu pracovní lá	itky	
 Roste s rostoucí teple 	otou T _H a klesající teplotou 7	c (nelze jít pod nejnižší teplot	tu v okolí)
 Je vždy menší než 1 a 	a pro $T_{\mu} = T_{c}$ je $\eta_{t} = 0$		-
η_{tc} je při stejných extr skutečných motorů. Benzínový motor $\eta_{tc} = 0,76$	émních teplotách větší než u pro T_H = 2500 K, T_c = 60 η_t TEORIE = 0,5	i termická účinnost teoreticky)0 K $\eta_{tskutočná}=0,3$	ých cyklů nebo
Parostroiní zařízení	pro T. = 600 K T. = 300) K	
η_{tc} = 0,5	$\eta_{t,TEORIE} = 0.3$	$\eta_{t,skutečné}$ < 0,3	
Konstruktéři mají snahu cyklu.	i vyvíjet a upravovat tepelne	ś stroje tak, aby se přiblížili Ca	arnotovu
Tento proces nazýváme	CARNOTIZACE.		
1 90 91 92 93 94 9	5 96 97 98 99 100 250		

StudyEnergyWeb.fme.vutbr.cz Astrivet wergets plotner po th peter II. ZÁKON TERMODYNAMIKY	pský v CR EVROPSKÁ UNIE Provinská DO ROZVOJE VZDĚLÁV			
No Deje Odvození z Clausiova integrálu kde $\boldsymbol{\theta} = \oint d\boldsymbol{s}$	$\oint \frac{dq}{T} \leq 0 \Rightarrow$	∮ <u>dq</u> <u>7</u> ≤∮ds		
II. zákon termodynamiky pro děje, kde <mark>dQ</mark> je teplo předávané při daném ději mezi soustavou a okolím	$dS \ge \frac{dQ}{T}$	<i>ds</i> ≥ <u><i>dq</i></u> <u></u> <i>T</i>		
II. zákon termodynamiky pro děje v tepelně izolované soustavě kde teplo předávané mezi soustavou a okolím je nulové ⇔ dQ = 0				
$dS \ge 0$ $ds \ge 0$ Princip vzrůstu entropie Tepelná smrt vesmíru				

StudyEn	ergyWeb.fme.vutbr.cz ni-energelik připraven pro tih práce	*** evrop	oský		
	III. ZÁKON	5 Sociality fond v	N L ČR EVROPSKÁ UNI	OP Vzdělávání SEDANO E pro konkurenceschopnost náznňoví	
TE	RMODYNAMIKY	INVESTICE [DO ROZVOJE VZ	DĚLÁVÁNÍ	
Nernstů	v tepelný teorém (1906)				
Změna e	entropie čistých látek se s kl	esající teplotou bl	íží k nule.		
Planck (1912)				
Absolut	ní entropie každé kondenzo	vané chemicky čis	té látky má při (9 K nulovou hodnotu.	
Mate	matický zápis:	$\lim_{T\to 0} S = 0$			
Pozn.:	Ukázalo se, že to platí jen	pro krystalické čis	té látky a		
	nikoliv pro amorfní látky n	ebo slitiny. Krysta	lické látky		
	mají totiž atomy uspořáda	né, a proto jejich	entropie		
	může být menší nebo až n	ulová.			
III. ZÁKON TERMODYNAMIKY					
Entropie čistých krystalických látek při 0 K je nulová.					
Pozn.:	V praxi bývá S = O při t = O	°C a pro <i>t < 0</i> °C je	e S < 0.	Paulis, M also formanatarias Graps VV Roc.200	
Pozn.:	Konečným počtem dějů ne	elze dosáhnout 0 H	(. V roce 1990 b	ylo dosaženo 8.10 ⁻¹⁰ K.	
- 4	110 110 120 121 122 122 124 1	25 126 250			

1....118 119 120 121 122 123 124 125 126 250

- Hoření nahrazujeme přívodem tepla z okolí
- Výfuk nahrazujeme odvodem tepla do okolí
- Jednotlivé děje nahrazujeme vratnými termodynamickými ději, komprese a expanze bývají adiabatické (nebo technické polytropy)

1 . . . 136 137 138 139 140 141 142 143 144 . . . 25

StudyEnergyWeb.fme.vutbr.cz Ţ. ₽ F dix officeryan are th prace opský sociální fond v ČR EVROPSKÁ UNI S -STAVOVÉ (ENERGETICKÉ) INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ VELIČINÝ MOKRÉ PÁRY Vychází se ze syté kapaliny (1 apostrof $^{\prime}$) a syté páry (2 apostrofy $^{\prime\prime}$) Veličiny V, H, U, S jsou aditivní a platí: $U_x = U' + U'' \qquad S_x = S' + S''$ $V_X = V' + V'' \qquad H_X = H' + H''$ $\hat{m} \mathbf{v}_{\mathbf{X}} = \mathbf{m}' \mathbf{v}' + \mathbf{m}'' \mathbf{v}'' \implies \mathbf{v}_{\mathbf{X}} = \frac{\mathbf{m}'}{\mathbf{m}} \mathbf{v}' + \frac{\mathbf{m}''}{\mathbf{m}} \mathbf{v}'' = (\mathbf{1} - \mathbf{x})\mathbf{v}' + \mathbf{x}\mathbf{v}''$ Po úpravách platí: Stavy mokré páry lze snadno a přesně počítat z tabulek syté kapaliny a syté páry, které nejsou rozsáhlé, jelikož mapují jen hodnoty ' a ". Používají se přitom: $V_{\chi} = V' + \chi (V'' - V')$ $h_x = h' + x \ (h'' - h')$ Uvedené rovnice přímek $u_x = u' + x (u'' - u')$ Interpolace v tabulkách $s_{\chi} = s' + \chi (s'' - s')$ 1...145 146 147 148 149 150 151 152 153 ... 250

Prof. Dr. ERNST MAC

 * 18. 2. 1838 Brno-Chrlice, ČR
 ♥ 9. 2. 1916 Harr, Německo

 $\kappa \cdot r \cdot T$

a =.

 $|\kappa \cdot p \cdot v =$

1 . . . 181 182 183 184 185 186 187 188 189 . . . 250

StudyEnergyWeb.	fme.vutbr.cz		opský ***		I
PŘENOS	TEPLA -	fond	VČR EVROPSKÁ UN	IE pro konkurenceschopnost	STONEO NIMMON
SAMOS	STATNÁ	INVESTICE	E DO ROZVOJE VZ	ZDĚLÁVÁNÍ	
DISCI	PLÍNA				
Podobný rozdíl jak	o v mechanice mezi	dynamikou a l	kinematikou.		
Známé pojmy:	TEPLO Q [J]		Q = Q	$\dot{\mathbf{D}} \cdot \boldsymbol{\tau} = \dot{\boldsymbol{\sigma}}$	$\cdot \mathbf{S} \cdot \tau$
	MĚRNÉ TEPLO a	[J.kg ⁻¹]	u – u	x <i>i</i> - 9	υı
Nové noimy:		[\]			
Nove pojiny.			1 1 1 1		
	HUSIOIA TEPELI	NEHO TOKU G	[w.m ²]		
			Konvekce (prouděním)	Vedení (Kondukce)	1
			And a state of the	The a start	Záření (radiace)
1 190 191 19	2 193 194 195 196 19	7 198 250	10000	and the second	

eb.fme.vutbr.cz		
NÝ TOK DENÍM	UIE pro konkurrenceschopmost	
přenosu tepla vedením je definován ZÁKONEM	$\dot{\vec{Q}} = -\lambda \cdot S \cdot grad T$	
e dán vztahem	$\dot{\vec{a}} = -\mathbf{\lambda} \cdot \mathbf{arad} \mathbf{T}$	
$\vec{n} \cdot \frac{\partial T}{\partial n} grad T = \frac{\partial I}{\partial n}$ jednotkový vektor normály k izotermické ploše (směřující do míst s vyššími teplotami)	T+dT	
izotermická plocha kolmá k tepelnému toku	<u> </u>	
součinitel tepelné vodivosti (lze najít pro různé látky v tabulkách)	S n	
je konstanta pro ideální plyny pro pevné látky a kapaliny pro reálné plyny (kapaliny při ↑p)	^v \	
	bb fme.vutbr.cz www.ya k ket NÝ TOK DENÍM IVESTICE DO ROZVOJE V IVESTICE DO ROZVOJE	

StudyEnergyWeb.fme.vutbr.cz Abstiviti-energetik pitpreven pro ith prace	evropsk		- III
ANALOGIE PŘI ŘEŠENÍ DR VEDENÍ TEPLA	INVESTICE DO	ROZVOJE VZDĚLÁVÁNÍ	nost namon
Mezi veličinami tepelnými a elekti při řešení úloh vedení tepla. Pro vedení tepla platí Fourierův zákon $\dot{q} = -$	rickými existuje a - J · <u>J T</u> <u>S</u>	nalogie, která nám můž Pro elektrické obvody platí Ohmův zákon	eme pomoci $I = rac{U}{R}$
 Je zřejmé, že: Elektrický proud je analogický h tepelného toku Napětí či rozdíl napětí je analogi 	nustotě gický rozdílu	Zapojení sériové	
• Elektrický odpor R je analogicky odporu $R_1 = \delta/\lambda$	ý tepelnému	Zapojení paraleli	2 03 1í
Poznatky z řešení elektrických oby využít při řešení složitějších úloh v skládáním jednodušších exaktních	vodů můžeme vedení tepla, a to v řešení DR		$ \begin{array}{c c} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \mathbf{R}_3 \\ \mathbf{U}_1 \end{array} $
1208 209 210 211 212 213 214 21	5 216 250		

StudyEnergyWeb.fme.vutbr.cz F pský PODOBNOST PŘI sociální fond v ČR PŘIROZENÉ KONVEKCI INVESTICE DO ROZVOJE VZDĚLÁVÁN Zrychlení od vztlakové síly dosadíme do DR pohybové a dostaneme $\frac{\partial \boldsymbol{w}_{\boldsymbol{x}}}{\partial \boldsymbol{x}} + \boldsymbol{w}_{\boldsymbol{y}} \frac{\partial \boldsymbol{w}_{\boldsymbol{x}}}{\partial \boldsymbol{y}} = \boldsymbol{\mathcal{V}} \left(\frac{\partial^2 \boldsymbol{w}_{\boldsymbol{x}}}{\partial \boldsymbol{x}^2} + \frac{\partial^2 \boldsymbol{w}_{\boldsymbol{x}}}{\partial \boldsymbol{y}^2} \right)$ $\left|-\frac{1}{\rho}\frac{\partial\rho}{\partial x}+g\gamma\Delta T\right|$ ∂**y** $Ar=\frac{g\gamma\Delta TL}{}$ Z levé strany rovnice pohybové a z posledního členu vpravo dostaneme W^2 Archimédovo číslo Ar vyjadřuje poměr sil vztlakových a setrvačných Při přirozené konvekci nelze využívat rychlost proudění (je velice malá), proto je třeba Ar vynásobit Re², které je rovněž Archimédes $Gr = \frac{g\gamma (T_w - T_\infty)L^3}{V^2}$ obsaženo v DR pohybové $\boldsymbol{Ar} \cdot \boldsymbol{Re}^2 = \frac{\boldsymbol{g\gamma} \, \Delta T \, \boldsymbol{L}}{\boldsymbol{w}^2} \cdot \frac{\boldsymbol{w}^2 \, \boldsymbol{L}^2}{\boldsymbol{v}^2}$ Gr vyjadřuje vztah vztlakových, třecích a Výsledkem je Grashofovo číslo (F. Grashof 1826-1893) ■ 1...217 218 219 220 221 222 223 224 225 ...250 setrvačných sil

75

StudyEnergyWeb.1	me.vutbr.cz	***	vropský			5
ZÁKLADNÍ PROBLÉMY TEPELNÝCH VÝMĚNÍKŮ INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ						
Tepelný tok je př což představuje: • Přestup tepla • Vedení tepla v • Přestup tepla	enášen tzv. pros konvekcí z horké ve stěně (někdy i konvekcí ze stěn	tupem tepla tekutiny <i>H</i> d složené) v do chladné	lo stěny tekutiny C			$ \begin{array}{c} $
Tepelný tok přenášený ve výměníku je dán vztahem $\dot{Q} = u \cdot S \cdot \Delta T_s$ α_{H}				(α_c)		
S [m²]	plocha výmění co nejmenší)	ků (měla by l	oýt			
u [W.m ⁻² .K ⁻¹] ΔT_{S} [K] Pro výpočet tepe	součinitel pros střední teplotr podél plochy v Iného toku nebo	tupu tepla ní spád (mění ýměníku) o pro návrh p	se lochy výměn	T _{H2}	2 je třeba	$T_{C2}\Delta T_{2}$
součinitel prostu	pu tepla u a stře 8 229 230 231 232 2	ední teplotní 33 234 250	spád ⊿T _S			

StudyEnergyWeb.fme.vutbr.cz Anishard-warget pflyrare pa th para HUSTOTA ZÁŘIVÉHO TOKU	evropský fordv CP fordv CP vestice Do Rozvoje vzdělat vestice Do Rozvoje vzdělatvání					
HUSTOTA ZÁŘIVÉHO TOKU = ZÁŘIVOST $E [W.m2]$ je při úplné přeměně energie záření na teplo rovna hustotě tepelného toku \dot{q} .						
zářivého toku (zářivosti) E a plochy S $E = \frac{dE}{dE}$						
Spektrální hustotu zářivého toku E_{λ} [W.m ⁻³] definujeme pro						
monochromatické záření (λ až $\lambda {+} d\lambda$)						
Jedná se o hustotu zářivého toku (zářivo pro danou vlnovou délku λ	st)					
. Kentinuélní engletnum réžení	Světelné záření					
 Absorpční sluneční spektrum (absorpce v 						
 plynech sluneční atmosféry) Emisní spektra alkalických kovů 						

