

STEELSIM201

4th International Conference on Modelling and Simulation of Metallurgical **Processes in Steelmaking**

Transient simulation temperature field for continuous casting steel billet and slab

WWW.STEELSIM2011.com

26.06.2011

Josef STETINA, F. KAVICKA, T. MAUDER, L. KLIMES Brno University of Technology

MODELS OF RADIAL BILLET AND SLAB CASTER

BILLET CASTER SLAB CASTER

FOURIER-KIRCHHOFF'S EQUATION

 $\boxed{\bigcirc}$

$$
\frac{\partial T}{\partial \tau} = \frac{k}{\rho \cdot c} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \left(w_x \frac{\partial T}{\partial x} + w_y \frac{\partial T}{\partial y} + w_z \frac{\partial T}{\partial z} \right) + \frac{Q_{\text{SOURCE}}}{\rho \cdot c}
$$
\nIF\n
$$
w_x \frac{\partial T}{\partial x} = w_y \frac{\partial T}{\partial y} = 0
$$
\nTHEN\n
$$
\frac{\partial T}{\partial \tau} = \frac{k}{\rho \cdot c} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \left(w_z \frac{\partial T}{\partial z} \right) + \frac{Q_{\text{SOURCE}}}{\rho \cdot c}
$$
\n
$$
\frac{T}{\text{temperature}} = \begin{array}{c}\n\text{temperature} & [K] \\
\text{Boundedity} & \text{time} \\
\text{the heat conductivity} & \text{time} \\
\text{the heat conductivity} & [N] \\
\text{Boundedity} & \text{m}^{-1}K^{-1}\n\end{array}
$$
\n
$$
1^{st} \quad T = T_{\text{pour}} \quad 3^{rd} \quad -k \frac{\partial T}{\partial n} = HTC \left(T_{\text{surf}} - T_{\text{modulo}} \right) \quad \begin{array}{c}\n\text{ex}_{x,y,z} & \text{coordinates} \\
\text{ex}_{y,z} & \text{coordinates} \\
\text{cosolRCE} & \text{heat flow/internal source} & [M] \\
\text{the heat capacity} & [M] \\
\text{d} & \text{c} & \text{specific heat capacity} \\
\text{d} & \text{c} & \text{interality} \\
\
$$

FACULTY
OF MECHANICAL
ENGINEERING

ENTHALPY AS A FUNCTION OF TEMPERATURE

Josef STETINA Brno University of Technology **Faculty of Mechanical Engineering**

COMPUTING NETWORK

The entire length of the slab/billet in the z-direction - from the level in the mould, down to the cutting torch, is approximately 24-27 meters.

- **Josef STETINA** Brno University of Technology
- 5 : Faculty of Mechanical Engineering

3D TEMPERATURE FIELD ELEMENT

- Brno University of Technology
- 6 : Faculty of Mechanical Engineering

THERMOPHYSICAL PROPERTIES OF STEEL

ρ**(T) [kg.m-3] -** Density **k (T) [W.m-1.K-1] -** Heat Conductivity **c(T) [J.kg-1.K-1] -** Specific Heat Capacity

IDS software

We use a solidification analysis package for steels IDS. IDS calculates thermophysical material properties from liquid state to room temperature.

BOUNDARY CONDITIONS

MEASURING THE COOLING EFFECT OF NOZZLES

Brno University of Technology 9 : Faculty of Mechanical Engineering

 $\boxed{\bigcirc}$

THE HEAT TRANSFER COEFFICIENT UNDER SINGLE AND TWIN FLUID NOZZLES

Water nozzle JATO 4065L Flow through one nozzle at 4.40 l/min

Water-air nozzle Lechler 100.638.30.24 Flow through one nozzle at 9.2 l/min

Josef STETINA Brno University of Technology 10 : Faculty of Mechanical Engineering

THE HEAT TRANSFER COEFFICIENT ALONG THE ENTIRE CASTER

11 : Faculty of Mechanical Engineering

 $\sqrt{2}$

OF MECHANICAL

SIMULATION OF FAILURE OF COOLING CIRCUITS

 $\boxed{\bigcirc}$

SIMULATION OF INFLUENCE OF CASTING SPEED ON TEMPERATURE FIELD

Josef STETINA

- Brno University of Technology
- 13 **Faculty of Mechanical Engineering**

TEMPERATURE FIELD OF SLAB AND BILLET

 $\boxed{\bigcirc}$

THE CASTING TECHNOLOGY CONTROL SYSTEM

 \sqrt{C}

ON-LINE MODEL IN THE CONTROL ROOM

Josef STETINA

- Brno University of Technology
- 16 **Faculty of Mechanical Engineering**

DYNAMIC RESPONSE MODEL TO CHANGES IN CASTING SPEED

- **Josef STETINA**
- Brno University of Technology
- 17 : Faculty of Mechanical Engineering

TRANSIENT VALUE – OFF LINE MODEL TRANSIENT VALUE – ON LINE MODEL

METALLURGICAL LENGTH - CASTING SPEED FOR SLAB 1530x250 AND BILLET 150x150

CALCULATED AND MEASURED SURFACE TEMPERATURE OF SLAB AND BILLET

- **Josef STETINA**
- Brno University of Technology
- 19 : Faculty of Mechanical Engineering

CONCLUSIONS

- 3D numerical model of the temperature field for concasting of steel in the form of in-house software
- The software has been implemented:
	- EVRAZ VITKOVICE STEEL
	- TRINECKE ZELEZARNY
- Three ways of utilizing the results of the dynamic model:
	- Simulate/Monitor the current temperature field
	- Simulate/Monitor the quantities in the form of trends
	- Simulate/Monitor the statistical quantities from individual melts

THANK YOU FOR YOUR ATTENTION

Brno University of Technology Technicka 2, Brno 616 69 Brno Czech Republic Tel: +420-541143269 Fax: +420-541143269 Email: stetina@fme.vutbr.cz Internet: http://ottp.fme.vutbr.cz/cas

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŜI BUDOUCNOSTI

Josef STETINA Brno University of Technology 21 : Faculty of Mechanical Engineering

